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Abstract. The Green function related to the problem of a Dirac particle interacting with a plane wave is
calculated via the path integral formalism proposed recently by Alexandrou et al. according to the two
so-called global and local projections. With the help of the incorporation of two simple identities, it is
shown that the contribution to the calculation of the integrals comes essentially from classical solutions

projected along the direction of wave propagation.

1 Green function calculations

Recently, another formulation using path integral [1]
(which does not introduce the matrix v as opposed to
the previously existing one [2]) was proposed to describe
the dynamics of Dirac particles. Thus, the Green function
of a system can be obtained in two ways.

First, we have the so-called global projection
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where the parameter ko plays the role of a mass, a = -a
and the operator (18 —gA(x) + m) is used to eliminate

the superfluous states.
The second possibility is by the so-called local projec-

tion
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where I'*, ;n = 0,4 and y are odd (Grassmann) variables
anticommuting with the y-matrices.
The boundary conditions for the z-space path integral
are
2u(0) =y,  xu(T) = 2,
and the antiperiodic boundary condition for the Grass-
mann path integral is

(:M(O) + CM(T) = FHa

where (,(7), p = 0,4 are odd trajectories, anticommuting
with the y-matrices.

The object of this paper is to see how we can obtain
from this recent formalism the solution for the simple case
of a Dirac particle interacting with a plane wave field by
determining exactly the corresponding Green function in
the two representations, global and local. The configura-
tion of the field is characterized by the following features:

(1) the four-vector potential is an arbitrary function of
¢ = k-x with k2 = 0, where k is the plane wave propaga-
tion four-vector,

(2) the external field A, () satisfies the transversality con-
dition (Lorentz gauge) k - A = 0. The scalar product of
four-vectors, denoted by a dot, stands for a - b = a,b".
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By introducing only two identities, one profiting from
the feature of the plane wave (a feature already dealt with
n [3-5]), another quite similar but taking into account
the form of the spinning interaction, we are going to show
the importance of the classical equations of motion for
such a problem while determining the computations of
the expressions (1a’) and (1b).

As the plane wave field is only a function of the product
k- x, let us first assume that the variable & - x is indepen-
dent of the four-position z by introducing the following
identity:
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expressed with the phase space variables (¢, p,) .

By inserting respectively this identity in (1a’) and (1b),
we get for the expressions of the Green functions the fol-
lowing results, respectively:
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To be able to integrate over the x variables let us lin-
earize, as usually is done, the kinetic term by introducing
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the momentum variables p. The integrations give a delta
functional o (p) which implies that the momentum p is

conserved during the evolution (p = cons).
Accordingly the results of the Green functions in the
two projections are written
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The introduction of this constraint has allowed us,
therefore, to bring the study of motion from four-dimen-
sional space to a one-dimensional space described by the
variable ¢. Furthermore, noting that the coupling term of
the spin variables with the electromagnetic field can be
written as

Fu(e)¢h¢" =2(k-¢) (A" (), (4)
where the prime indicates a derivative with respect to the
argument , we suggest the introduction of a second vari-

able 1 which considers k - ¢ independent of ( via the fol-
lowing identity:
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x/DnDpnexp [i/OTpn (n—kg) d’T‘| =1. (5)
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Obviously, 7 is equal to k- ¢ at each time of the evolution
and the variables 7 and p, are of the same nature as ¢,
namely, they are odd (Grassmann) variables.

The Green functions in these two representations are
thus simplified to
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Knowing that in the two preceding expressions of the
propagator, the spin variables are subjected to boundary
condition reflecting the antiperiodic character of the na-
ture of spin and that the exponential contains an addi-
tional term ¢ (0) - ((7'), it is convenient to elude these dif-
ficulties by introducing the variable change (1) = w (7)

Wy (T) = éu (T) s
T I
=3 [ elr=rwr e+ 5
e (1) = sign ofr, (7)

where the velocity w (7) keeps the same nature as {(7).
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We should note that during the initial and final time,
the so-called antiperiodic boundary condition is always
satisfied: ¢#(0) 4+ CH#(T) = I'*. In other words, the velocity
variables are not subject to any restrictions, in contrast to
the (*. Besides, following this transformation, a quadratic
term in w (7) has appeared in the action.

Therefore, the Green functions in the two respective

projections become
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where we have used the following convolution notation:
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In order to involve the classical equation of motion in
the evolution let us make the following shift

W (r) — wh(r) — ik" / po()e "M T — e (9)
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Consequently, the integration over p,, will be straightfor-
ward and there appear respectively in the two representa-
tions Dirac functions, namely

/ Dp, exp (i /0 ! p,,ﬁdT) — 5, (11a)
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It is remarkable that the arguments of the delta func-
tional are nothing but the classical equations of motion.
In fact, it is easy to see that the classical equations of mo-
tion related to the (Grassmann) variable ¢ obtained from
the Lagrangian and multiplied by k, become simply

—2ik - ( =0, (12a)

-k
—2ik - CJriX—O

12b
Tko ( )

That is to say, we again obtain the same argument of the
delta functions:
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The respective solutions to the equations of motion are
elementary, and they are given, respectively, by
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0(T) = 1a = S XT (14b)

Let us go back to the Dirac functions or rather to its
integral form
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where p,,, is an odd (Grassmann) variable and let us in-

clude it in the expressions of the ég and (). As the integral
over the wH(7) variable has a known standard form,
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where J,,(7) is a Grassmannian current, and in our case
we have the following respective expressions:
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(17b)

So, after some calculations the Green functions become
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One can immediately verify that the antiperiodic bound-
ary condition 7, + 1, = k - I' is satisfied. By substituting
the previous results in (18a) and (18b) we have
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where 7 present in (18b) should be replaced by taking
into account (14b). Let us now integrate over p,, to get,
respectively,
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In fact, these can be obtained by deriving a Lagrangian
over the x path and projecting it along the vector k. The
even (Grassmann) term characterizes the spin contribu-
tion.

These relations characterize the link between 7 and ¢
and in consequence allow us to integrate the interaction
term.

The Green functions are then reduced, respectively, to
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Now, using the following integral representation of the
Dirac function:
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we make the following shift: p — p — kp,, and then by
integrating over the fermionic time, the propagator in the
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local projection will be rewritten
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Finally, let us proceed to the derivation related to the
variables I'. After some straightforward computations the
propagators G, and G are respectively rewritten as
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Note that the derivation in (24a) and (26) involves an
antisymmetrization, for example,

0
exp ('y 8F“)FF

and the change variable p — —p has also been made.

According to (1a), the dynamics of the system is thus
totally determined by the following expression in the
global projection:
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We notice that the two representations give the same re-
sult, G} = Gg.

After symmetrization the propagator related to the
Dirac particle interacting with a plane wave field is finally
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This result agrees with that of [3].
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2 Conclusion

In conclusion, we have calculated the exact Green func-
tion related to a Dirac particle interacting with a plane
wave field using the formalism of global and local projec-
tion proposed recently by Alexandrou et al. Besides, we
have shown, thanks to the incorporation of two simple
identities, the importance of classical paths (projected in
the direction of the plane wave) in determining the Green
function in the two cases, global and local.
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